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A SPECIAL-PURPOSE INTERPILANETARY TRAJECTORY
CCMPUTATION PROGRAM FOR GUIDANCE AND NAVIGATICON STUDIES

ABSTRACT =03/5

This report contains a technical description of an interplanetary tra-
jectory computation program written specifically to be used in making
comparative evaluations of interplanetary guidance and navigation techniques.
The special requirements for this purpose are defined, and the correspon-
ding capabilities of the program are explained. Chief among these are
simultaneous state and state transition matrix integration; a fixed time of
arrival, fixed target point trajectory search capability; computation of tra-
jectories in either time direction; ease of modification by non-professional
programmers; and ability to be batch-processed in a high speed, high

volume computation center.

Some computational techniques developed in the preparation of this
program which may have useful applications in other programs for other
purposes are explained in detail. These include a linear trajectory search
method based on the linearized state transition matrix, a new formulation
of the hyperbolic Kepler problem for high precision conic computactions,
and a unique accuracy self-check method based on forward and backward

trajectory integration.

Computational error sources are discussed and typical accuracy
data are given. The program subroutine structure and functional flow are
described briefly. A companion document, the program User's Manual,

contains more detailed information about the program structure.

Data are presented to illustrate operation of the single-precision
version of the program. A double-precision version is also available. Both
single- and double-precision versions are available in FCRTRAN II and
FORTRAN IV languages.

William T. McDonald
July 1965
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CHAPTER I

INTRODUCTION

This program has been written to implement studies of guidance
and navigation techniques for interplanetary flight., It computes
point mass interplanetary trajectories in a many-body gravitational
field and other necessary data. The program serves as an evaluation

standard in these studies: that is, it is first used to search for
and estoblish nominal trajectories and to compute state transition

mitrices at points along these tri-jectories. Then it is used to com-
pute, by means of the non-linesr many body equations of motion, the
trrget miss due to deviations measured or corrections made along «
nominsl trajectory according to the methods of the navigation or gui-
d~nce techniques under study. The results evaluote the accuracies of
the technicaues,

The program requirements for these technique studies are funda-
mentally different from the requirements of other programs intended
for spacecraft targeting or launch window analysis, and these dif-
ferent requirements have justified the cost of preparing this new pro-
gram. Firstly, the program is required to compute the state transi-
tion matrix, in addition to the state vector, which is a fundamental
matrix used in nearly all linearized guidance and navigation tech-
niques. Secondly, since the evaluation of a technique requires mul-
tiple computations of effects of deviations or corrections for several
different types of missions, the program must operate economically.
This in turn requires not only high processing speed, but also that
the program meet the requirements of high-production automatic batch
processing at the MIT Computation Center., Thirdly, to allow for
changing requirements of a variety of anticipated studies by engineer-
ing personnel, the program is required to have the capability of easy
modification by non-professional programmers.

A number of tradeoffs have been necessary in designing the pro-
gram to accomplish these requirements, since the requirements conflict
to some extent, The program is written in FORTRAN II for the IBM 7094
computer at the MIT Computation Center, and a FORTRAN IV version has
been prepared for the IBM System 360. The use of a more efficient
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language, such as FAP, would enhance the processing speed consider-
ably; but non-professional programmers would not be able to easily
modify the program. The requirements of high-production batch pro-
cessing are that the program operate with a standard monitor system
and that no input data tapes (e.g. tape-stored ephemerides) be used.
Programs which do not meet these reguirements must be processed with
special handling procedures, and this seriously curtails the use of
such a program for studies involving a large amount of computation.
However, the intended use of this program for guidance and navigation
technigue evaluations does not regquire highly precise planet ephemer-
ides, and thus internal computation of ephemerides is permitted. The
basic reason for this is that, as long as the solar system model used
in the program is a reasonably realistic representation of the actual
solar system, the absolute accuracy of a technique can be determined
to within at least an order of magnitude and, furthermore, the rela-
tive accuracies of different techniques can be determined precisely.
Accordingly, the present program uses a simplified solar system model
in which the motion of the Sun is neglected, the included planets are
Venus, Earth, Mars, Jupiter, and Saturn, the influences of the Moon
and other solar system bodies are neglected, harmonics in the planet
gravitational potentials are neglected, solar radiation pressure is
neglected, and the planet ephemerides are computed by means of oscu-
lating conics approximating the planet orbits. This simplified meth-
od of ephemeris generation also facilitates fast trajectory integra-
tion backward in time is well as forward, which is a very useful
capability in state transition matrix computations.

This program, per se, is very useful for the intended special
purpose. The imprecise solar system model, of course, renders it
inapplicable to any type of study requiring a highly accurate compu-
tation of a real interplanetary trajectory. (Provision has been made,
though, to modify it to use tape - stored precise planet ephemerides
and to include the neglected influences should the need arise,) How-
ever, in the preparation of this program some rather novel trajectory
computation techniques have been developed which individually have
wider potential applicability to trajectory programs for other pur-
poses. These special techniques are listed below.

1. Trajectory computation both forward and backward in
time and the use of this capability for a "closed loop"

accuracy check in the program.
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2. Use of the state transition matrix to mechznize & sim-

ple and efficient trajectory search procedure.

3. A new formulotion of Kepler's problem for hyperbolic
conics for high precision computation, which «chieves a
very significant improvement in the computational accur acy

of the conic position =nd velocity used in the Encke method.

These techniques are explained in considerable detail in Chapter
III, since they may have an upplicstion to 4 wider range of trajec-~
tory computation problems. In the following section, Chapter II, a
general description of the program is given. Methods and capabilities
that are stunderd are only mentioned, but certain of the computational
methods which =are not standard and the special technigues listed above
are described in detail in Chapter III. Chupter IV briefly describes
the program functional flow 2nd the functions of the individual sub-
programs. Detailed flow churts, duta formut descriptions, and pro-
grem listings will beé found in the companion document, the program
Users' Manual (Reference 1),

The technical descriptions given in this document apply both
to the single-precision and double-precision versions of the program.
There ure, of course, significant differences in the program struc-
tures for the two versions, but these are described in the Users'

Manual (Reference 1).






CHAPTER 1II

GENERAL PROGRAM DESCRIPTION

2.1 Program Operating Churacteristics

2.1.1 State and State Transition Matrix Integration

The program computes the state vector by integrating the many
body equations of motion and the state transition matrix by integra-
ting the state variational equations, The two integrations are done
simultaneocusly, so that one pass of the program yields both the state
oand state transition matrix as reguired. The state transition matrix
is, of course, state-dependent, and the way in which the two integra-
tions are folded together is described in Sections 3.1 and 3.2. The
state integration is done by Encke's method, &nd the numerical inte-
gration technigue used is Nystrgm's method (Section 3.3). The inte-
grations start with specified initial conditions (an initial state
for the state integration and an identity matrix for the stcte tran-
sition matrix integration) and proceed until the specified time of

flight has elapsed.

2.1.2 Reference Coordinates and Units

The reference coordinates for the computations are determined by
reference planet ephemerides which are entered as input data. These
ephemerides must always be expressed in heliocentric non-rotating,
non-accelerating coordinates; ecliptic coordinates of a reference
date (usually 1950.0) are almost ulways used in the studies in this
laboratory, but heliocentric eguctorial or other coordinates may be
used equally well. These ephemeris reference coordinates then estab-
lish the directions of the reference coordinates of the program.
However, the program reference coordinates are planetocentric or
heliocentric in different phases of the trajectory, depending upon
which of the bodies in the solar system exerts the primary influence
determining that trajectory phase. The initial phase is specified in
the program input data, and the initial state vector must be speci-
fied in the reference coordinates centered at the primary body of

the initial phase. For example, if ecliptic reference coordinates
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are used, for an Earth injection the initial phase is earth-centered
and the initial state vector must be specified in Earth-centered
ecliptic coordinates. After the initial point a phase determination
is made at the end of each time step of the integration according to
the test described in Section 3.6, and phase changes take place auto-
matically when the test indicates the necessity. The phase change
procedure is simple vector addition or subtraction of the reference
body ephemerides and the spacecraft state. Since no coordinate rota-
tion occurs at a phase change, no change is required in the state
transition matrix.

Computational units used in the program are kilometers (distance),
km/sec (velocity), and seconds (time). The reference planet ephem-
erides are entered in units of a.u. and a.u./day, because these units
are used in the source of planet ephemerides. Conversion to km
and km/sec is done in the program. The zero time reference in the
program is immaterial, as long as the start time, end time, and ep-
ochs of the reference ephemerides specified in the input data all have
2 common zero time reference. For computational purpose the program
sets the start time to zero and reckons all times from this reference.

2,1.3 Two-directional Integration Capability and Closed-loop
Accuracy Check

As mentioned in the Introduction, the progr«m has the capability
of trajectory integration backward as well as forward in time. This
capability facilitates economical computation of state transition
matrices at several reguired points along a trajectory. For example,
suppose that along an Earth-Mars transfer it is planned to make cor-
rections at three points by means of a guidance technique using the
integrated state transition matrix. Then the matrices relating tar-
get point miss to state deviations measured at each of the three
points are required. With integration backward in time from Mars to
Earth the nominal trajectory and all three required matrices can be
generated directly by a single integration, while more complex com-
putations are required if only integration forward in time is allowed.

This forward-backward integration capability provides the pro-
gram with a rather unique “closed-loop" accuracy check. This accu-
racy check works as follows. A trajectory between a starting point
and a target point is found by integration in, say, the forward time
direction. Then a reverse integration is performed using the precise

terminal state from the forward integration as the initial condition.



might be characterized as the fixed time of transfer, many-body Lam-
bert problem. The search computations are linear, and, as explained
in Section 3.7, the range of misses for which the linear search con-
verges 1s as large as about half the distance of the target point
from the Sun in cases tested to date. For example, if the target
point is in the near vicinity of a target planet, if the miss on a
search iteration is so large that the trajectory endpoint lies out~
side the sphere of influence, the search computations are done in
heliocentric coordinates, and the range of linearity is then deter-
mined by the ratio.of the miss and the heliocentric target point ra-
dius. Table 3-1 in Section 3.7 shows some typical examples illustra-
ting the efficiency of the search procedure, The efficiency is rela-
tively good, and this can be attributed primarily to the computation
of a new state transition matrix automatically in each search itera-
tion, so that the correct matrix is always available to be used in
computing a correction to the starting velocity.

In the cases tested,the specified time of flight has always
been large enough that the heliocentric transfer is elliptical with
an eccentricity of the osculating ellipse significantly less than
unity, and satisfactory convergence has been obtained. No tests have
been made with near-parabolic transfer conditions,

The initial guess for the starting point velocity is not highly
critical, except for a near 180° heliocentric transfer, because of the
extended range of convergence mentioned above, However, if the ini-
tial guess is reasonably good, the search efficiency i§ further en-
hanced. A simplified, patched-conic procedure has been used success-
fully to generate first guess velocities, and this procedure is des-
cribed in Section 3.7, The program itself may be used to generate
conic orbits. The planet and Sun gravitational constants are inclu-
ded in the program input data; if any of these constants are set to

zero, the effects of the corresponding bodies are "switched off",

2,1,6 Operating Modes and Printout

The program has three operating modes to which the data printout
provisions are closely coupled.

2,1,6.,1 Mode 1

Mode 1 is intended primarily for checkout purpose. A complete

data printout occurs at the beginning point and the end of every time
step (automatically included are the phase change points and the

endpoint) in a single integration. The program will not search in



The reverse integration should reach the starting point with a termi-
nal state that matches the original initial state for the first inte-
gration, if computational errors are negligible., The difference be-
tween the two states at the starting point indicates the computation-
al inaccuracy. This capability has been found to be most useful in

determining the effects of computational errors in the program.

2.1,4 Simplified Ephemeris Generation

The planet ephemerides are computed from osculating conics appro-
ximating the planet orbits. The elements of the osculating conics
are determined from the reference ephemerides entered as input duta.
These reference ephemerides are both the positions and velo:ities of
the five planets Venus, Euarth, Mars, Jupiter, and Saturn at reference
epochs chosen to give a good approximation to the planet orbits during
the flight. In the experience of this group the most convenient
source of these data has been the Jet Propulsion Leboratory Ephemeris
Tapes E9510, E9511, and E9512, covering the years 1950 to 2000 (ref-~
erence 4). A special program has been written to convert the ephem-
erides on these tapes, which are in heliocentric equatorial coordi-
nates of 1950.,0, to heliocentric ecliptic coordinates of 1950,0 and
list the data in « readable format. The reference ephemerides for
the trajectory to be computed are taken directly from the listings
and used as input data. Provision is made in the first operating
mode (Mode 1) of the trajectory program to print the computed planet
ephemerides at each time step in the computation. These printed datsa
can be used to check the quality of the approximate ephemerides by

comparison with the listed ephemeriges.

2.1.5 Trajectory Search Capability

The program has a trajectory search capability. Given a starting
position with respect to the initial body, a target point with respect
to a terminal body, a fixed time of flight for the transfer, and an
initial guess as to the starting velocity, the program will perform
an iterative searcn for a trajectory by updating the starting velocity.
A submatrix of the state transition matrix relates terminal point miss
to initial point velocity deviations, and this relation is used to
mechanize the iterative search. The search procedures are described
in detail in Section 3.7.

The search attempts to satisfy three terminal position con-

straints by varying only the three initial velocity components, which



Mode 1; only a single trajectory computation is performed but the
program does compute cnd print out the target point miss and the up-
dated starting velocity for the next search iteration. 1In other
words, the program cycles through a complete trajectory search itera-
tion once, and the printout provides a trace of all computations per-
formed.

The data printout at the end of each time step includes the fol-
lowing list of information (the Users' Manual, Reference 1, describes
the record format):

Elapsed time from start
Primary body
True state vector
Encke conic state vector (see Section 3.1)
Encke vzrisble state vector (see Section 3.1)
Disturbing acceleration defined in the Encke method
Gravitational gradient matrices
due to the primary body {see Section 3.,2)
due to the perturbing bodies (see Section 3.Z)
State transition matrix
Product of state transition matrix and its inverse and
the RMS Matrix, which are checks on transition
matrix computational accuracy (optional, controlled
by command in the input data; See Section 2.2.2,2)
Planet positions
At each phase change point two printouts occur. The first is a com-
plete printout as described above before the phase is changed, and
the second repeats the above list after the phase is changed, except
for the state transition matrix, the optional computational checks,
and the plaonet positions, none of which varies across the phase
‘hange.

Mode 1 printout also includes a final record listing the results
of the search computations to update the starting velocity for a new
search iteration, The listed information in this final record in-
cludes the following:

Updated starting velocity

Matrix product NN—l to check the updating computations
(see Sections 3.2 and 3.7)

Position miss vector components and magnitude



2.1.6.2 Mode 2

Mode 2 of the program is the usual search mode. In this mode the
program automatically cycles through trajectory integrations, updating
the starting velocity after each iteration according to the search com-
putations described in Section 3.7. The input data include a maximum
number of search iterations and a tolerance on the allowable miss of
the target point. The search will terminate under program control
either when a miss is obtained which is within the tolerance specified,
or else when the maximum number of search iterations is reached.

Automatic printout in Mode 2 occurs only at the beginning point,
the phase change points, and the endpoint of the trajectory. Further-
more, a control parameter in the input data determines whether this
printout occurs in each search iteration or only in the final iteration.
The printed data in each record include all the information in the
first of the two lists above, except for the planet positions which are
printed in Mode 1 only. 1In each iteration for which printout occurs,

a final record lists the position miss vector components and magnitude.
It is also worth noting that Mode 2 can operate with the input
data control determining the maximum number of search iterations set to

1 so that only one iteration occurs. This accomodates the cases in
which limited printout it required along an established trajectory with-

out either a search or the voluminous printout of Mode 1.

Mode 3 is also a search mode, differing from Mode 2 only in that the
full state transition matrix is not computed. This mode is intended
primarly to be used in preliminary trajectory searches in which the
state transition matrix is of no use other than to mechanize the search
and fast computation time is desired for search efficiency. Only a
portion of the state transition matrix is required for the search com-
putations, and only that portion is computed in Mode 3. The printout
in Mode 3 is identical with Mode 2 except that the state transition ma-

trix and the associated error check matrices are not printed.

2,1.6.4 Special Printout Provision

In addition to the automatic printout for each of the three copera-
ting modes, provision has been made in the program to obtain printouts
at up to twenty specifiable time points along the trajectory. These
special printouts can be obtained in any of the operating modes. The
times of the special printouts are entered in the input data, and the

times must be entered chronologically from the starting time of the
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trajectory computation. The method which is used to compute the data
at the special times is as follows. At the beginning of each normal
time step in the program a test is made before the numerical integra-
tion commences to determine if the next required printout time lies
within that time step. If it does not, the integration proceeds nor-
mally; if it does, the following special computational procedure oc-
curs., The current time point in the integration becomes a point of
demarcation, and all necessary current data for that point are spe-
cially stored. Then a special time step is computed from the present
time to the required printout time, and a special integration step
takes place, generating the data required for printout., After the
printout occurs, the program restores the specially stored data at

the point of demarcation, and the normal integration proceeds from
that point with the next normal time step, and the printout time point
test recommences with the next required printout time.

This method is somewhat more costly than a method which would
simply inject an irregular time step at each printout point, and may
be more costly than an interpolation method. However, it has the
relative advantages that the overall integration is free of any noise
regulting from irregular tine steps znd the printed data are free of

interpolation errors,

2,1.7 Osculating Conic Data Option

The program includes an option for computing and printing the
parameters and other data of the osculating conic approximating the
trajectory at each printout time point. A control parameter in the
input data determines whether or not the @SC@N subroutine is called
at each printout time. This subroutine computes and prints the fol-
lowing osculating conic data:

Conic type (ellipse, hyperbola).

Unit vectors locating the principal axes of osculating
conic,

Unit vectors locating the ascending line of nodes and the
transverse axis in the osculating orbit plane.

Unit vectors locating the R,S5,Z coordinates (Reference 2).
Unit vectors locating the P,Q,Z coordinates (Reference 2).
Special anglesy and g (Reference 2),

Longitude of the node, argument of the pericenter, and
the inclination angle of the osculating conic.

Semi-major axis, eccentricity, epoch of pericenter passage,
true anomaly, hyperbolic anomaly, and mean anomaly
{for a hyperbola),
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Semi-major axis, eccentricity, epoch of pericenter passage,
true anomaly, eccentric anomaly, and mean anomaly
(for an ellipse).

It should be noted that the osculating conic described by these data
is not the osculating conic used in the Encke integration method as
described in 3.1. The latter conic is distinguished in the program
terminology as the "Encke conic"

2,2 Ccomputational Accuracy

2.2,1 Error Sources

Special measures have been necessary to limit computational in-
accuracies to tolerable levels, especially in the single-precision ver-
sion of the program. There are three categories of computational
errors present in the program which are particularly sensitive in the
single-precision computation. These are listed below and discussed
in turn in the following paragraphs:

1. Truncation errors in the numerical integration and roundoff

errors due to the limited precision (8 decimal figures in the

IBM 7094) in normal computations.

2. Errors due to loss of precision at the phase change points

and the rectification points in the Encke method.

3. Propagation of errors resulting from imprecision in the Kep-
ler problem computations in the generation of the Encke conic

state vector in the Encke method.

Double-precision computation, of course, greatly attenuates these
error sources, with, however, an associated penalty in computer oper-

ating time.

2.2,1,1 Truncation and Roundoff Errors

Truncation errors in the numerical integration are kept small by
use of a numerical integration method with a high order of accuracy
and by proper choice of the time step for that method. The fourth-
order Nystrgm method is used (Section 3.3); higher order Nystrgm me-
thods are available, but the fourth-order method is sufficiently
accurate, The time step computation is explained in detail in Section
3.5, with a derivation in Appendix B, and one basis of this computa=~
tion is that the truncation error be less than the precision level,
that is, less than 1 part in 108 for single-precision computation,

Truncation error is not the only determining factor in the time

step computation. Roundoff errors which are due to the limited pre-
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cision in the computations, tend to grow rapidly larger as the number
of time steps is increased. So, there is in general, a tradeoff be-
tween truncation errors and roundoff errors in the time step computa-
tion., The time step formula contains a scaling constant, and there is
a value of this scaling constant for which the total error from these
two sources is minimized. This optimum value is furthermore trajec-
tory-dependent, and should be redetermined in each case. The values
given in Section 3.5 have been found to be a good first guess, gener-
ally.

2.2.1,2 Loss of Precision at Phase Changes and Encke Conic
Rectifications

The errors which result from loss of precision at the phase change
points and the rectification points in the Encke method(technically,
roundoff errors) are unfortunate and, generally, irreducable conse-
quences of single-precision computation. To illustrate the nature of
this error source, consider a trajectory leaving Earth, going, say,
to Mars. At the first phase change point from geocentric to helio-
Centric coordinates the distance from earth is of the order of 106km,
and the distance of the earth from the Sun is of the order of lOSkm.
Therefore, in the phase change computations in the computer, numbers

of the following formats must be added:

XEXXXXXXX E 07 distance of point from Earth
JYYYYYYYY E 09 distance of Earth from Sun

when these two are added, the least significant two digits of the first
are lost. In the present example this is a position error of between

0 and 10 km., A similar error, but of quite different magnitude, is
made also in each velocity component. then these errors are propagated
forward to the target point, they result in a miss, The position and
velocity errors resulting from the phase change are not independent,
Furthermore, in this example there is at least one more phase change

at the Martian sphere of influence. Consequently, a general relation
which predicts the target miss due to these error sources is not easily
derived.

At each rectification point in the Encke method (see Section 3.1)
errors of precisely the same nature occur., Wwhen rectification occurs,
the numerically integrated deviation is two orders of magnitude small-
er than the total state vector, so a loss of precision occurs in the
rectification and a miss results, On a trajectory such as the one in

the example above, typically four rectifications occur, one at each of
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the phase change points (required by the change of primary body and

conic type), one in the midcourse phase,and one in the Mars approach
phase,

Double-precision computation is the only effective method of re-

ducing errors from these sources,

2.,2,1.3 Errors in the Hyperbolic Encke Conic Computation

This error source was most troublesome in the development of this
program, and a special formuletion of Kepler's problem was necessary
to reduce errors of this type to tolerable levels. Section 3.4 and
Appendix A describe the nature and consequences of this error source
and the special formulation devised to control the errors. Very brief-
ly, the equations of standard formulations of the Kepler problem are
critically sensitive to computational precision errors in the Kepler
iteration variable for the hyperbolic phases of trajectories in the
vicinity of planets. These errors propagate exponentially in the
hyperbolic equations and result both in large misses and in frequent
failures of the Kepler iteration varieble to converge to within an
acceptable tolerance. It was found that it was not possible to com-
pute the conic state to single-precision accuracy with any of the nor-
mal conic formulations tested (two varieties of the standard conic for-
mulation and the Battin universal formulation). It has been found
possible to obtain this accuracy with single-precision computation
using the new formulation, and this is regarded as an accomplishment

which may be of significant importance in other Encke method programs.

2.2.2 cComputational Accuracy Checks

The program provides three means of checking computational accu-
racy: (1) the search noise level, (2) accuracy checks on the state
transition matrix computation, and (3) the "closed loop" accuracy check,
These are discussed in turn below.

2.2.2.1 Search Noise Level

The search noise level is determined after a representative nomi-

nal trajectory has been computed by setting the target miss tolerance
in the input data to zero and allowing the program to cycle through a
sufficient number (usually 6 to 12) of search iterations. It is
understood that the nominal trojectory is within the noise band: that
is, there is no bias in the miss to be removed by further searching

when the noise level determination is made,
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The search noise level is an indication of random computational
errors., There are possible systematic errors in the single-precision
computations, particularly for very small perturbations about the nomi-
nal trajectory, and these are not revealed in the search noise level.
In the cases tested thus far, the target miss noise level reflects an
uncertainty in the initial velocity of less than 1 part in 107(single~
precision),if the time step scaling factor is properly chosen. That
is, if one of the initial velocity components for the nominal trajec-
tory is changed by 1 part in 107, the resulting miss will be well above
the noise level, unless the time step scaling factor is not properly
chosen. This serves, then, as one means of determining a proper time
step scaling constant; the value is optimum when the noise level is
minimum.

2.,2.2.2 State Transition Matrix Accuracy Checks

There are two accuracy checks on the state transition matrix com-
putations, which are optional depending upon a control constant in the
input data, The first is the computed product of the state transition
matrix C and its inverse C_l, and the second is an "RMS" matrix to be
described below. The product matrix CC-l should be the (6x6) identity
matrix, but, because of roundoff errors in the matrix multiplication,
very large errors result in the product matrix. Consequently, this
first accuracy check alone has limited usefulness: the accuracy of
the state trunsition matrix cannot be easily inferred from the product
matrix. The RMS matrix, however, can be used in conjunction with the
CC"l matrix to infer an order of magnitude of the state transition
matrix term errors. The paragraphs below give a very brief descrip-
tion of this method, and Figure 2-1 depicts a state transition matrix
and its associated product and RMS matrices used to illustrate the
discussion. Appendix C gives a detailed derivation of the effects of
errors in the Cc-l and RMS matrices.

The state transition matrix C may be partitioned into four (3x3)

submatrices:
M N

c = (2.1)
S T

Then, since C is simpletic, the inverse is obtained simply by rear-

rangement of terms:
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-1
The CC product matrix is obtained by straightforward multiplication:

. mrT - NsT)  (-mnT + wuT)
CcC = (2.3)
(str - 18Ty (-sNT + 1MT)

The computations in the program follow this pattern precisely, and

from Equation (2.3) two observations can be made immediately:
1. The diagonal elements of the upper right and lower left (3x3)
submatrices of CC"l should be identically zero regardless of the
errors in the terms of C. This is because the six multiplied
terms in the computation of each of these particular diagonal
elements consist of three pairs of identically equal and opposite
terms. The non-zero diagonal terms in these two submatrices

then result totally from roundoff errors in the multiplications

and additions involved in the computations, Reference to Figure
2-1 shows that these errors can be very large in the upper right
(3x3) submatrix especially.

2, The upper left (3x3) submatrix should be the identical trans-
pose of the lower right (3x3) submatrix regardless of the errors
in the terms of C. If the transpose property is not identically
true ( as is the case in Figure 2-1), the reason is that the
roundoff errors in the computation of corresponding terms sum
together in different orders in the two computations. It is also
true that in these two submatrices the term value differences
from 1 (diagonal terms) or O (off-diagonal terms) are due to

both roundoff errors in the matrix product computations and in-

accuracies in the state transition matrix.

Since some of the terms in the CC—l matrix result from matrix
product roundoff errors only and some from both roundoff errors and
transition matrix term errors, it is possible to ascertain the order
of magnitude of the roundoff errors only, the order of magnitude of
the combination errors, and then from a comparison infer a limit for
the order of magnitude of the transition matrix errors. The RMS ma-
trix is intended to facilitate this operation. The method of forming

the RMS matrix is as follows. Consider the ijth element of Cc—l:

1 1

(cc™ ). (2.4)

ij

"
mfﬂm

) (C)y, (™ k5
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The ijth element of RMS is (Cc-l)ij divided by the square root of the sum of the

squares of the six terms in the computation of (CC_I)..:

1)

_ ij
(RMS) ;= = (2.5)

L3
) [(cwlk <c‘1>kj]
k=1

An analysis of the propagation of both roundoff errs and state transition
matrix inaccuracies in the computed CC—1 and RMS matrices is given in Appendix C.
There are two assurnptions made in the course of analysis which lead to a simpli-
fied result:

1. The relative roundoff errors in all multiplications are independent and

unbiased and have the same distribution with a common variance ¢ rel’

(Relative error is the absolute term error divided by the term value.)

2. The relative state transition matrix term errors are also independent

. . . . . . 2
and unbiased and have a common distribution with a variance o

It is shown in Appendix C with the aid of these assumptions that the order of magni-

tude of the variance 0'2 of the relative roundoff errors can be determined from

rel

2 2

Trel ~  T(RMS) ’ (2.6)

where i and j denote the diagonal terms of the upper right and lower left (3 x3) sub-

matrices of RMS. That is, ij has the following permissable values
ij = 14, 25, 36, 41, 52, 63

is the variance of the (RMS)..

i term, and can be estimated from the printed

2
"(RMS) .
data. The order of magnitude of the variance of the relative state transition matrix
term errors can be obtained from

2 2 2

o + 20

rel t U(RMS)kl (2.7

where kl has any value other than the six values of ij above.
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The procedure for using the error checks is as follows:

1. Determine the order of magnitude of the variance of the relative round-
off errors from the diagonal elements of the upper right and lower left (3 x3) sub-
matrices of the RMS matrix, using Equation (2. 6).

2. Next, determine the order of magnitude of the variances from other ele-
ments of the RMS matrix using Equation (2. 7).

3. Compare the results of steps 1 and 2. If the order of magnitude in step
2 is about the same as in step 1, the relative state transition matrix term errors
are no larger than the relative roundoff errors. If the result of step 2 is signifi-
cantly larger than step 1, then the relative state transition matrix term errors are
significant and the order of magnitude of the variance 0'5 can be determined from
Equation (2. 7)

Consider Figure 2-1 again for an illustration. In applying step 1 we use all
six of the special elements of RMS to obtain an estimate of Ul

2 1 2 2 2
T el Z (RMS)14 + (RMS)25 + (RMS)36

+ (RMS)421 + (RMS)SZZ + (111\/15)6‘23

~ .38 x10716
In applying step 2 we do not use the main diagonal elements of RMS, because they
are nonuniformly biased. We arbitrarily choose the six off-diagonal elements of
the upper left (3 x3) submatrix:

2 2

1 2 2 2
01t 20't ~ T (RMS)12 + (RMS)13 + (RMS)21

+ (RMS) 223 + (RMS) 2 + (RMS)322

7 ~ l.14x 10712
We conclude, then, that the relative term errors are much larger than the relative

roundoff errors, and

o, ~ .5x 10

2.2.2.3 Closed-loop Accuracy Check

The "closed" loop accuracy check evaluates the effects of both random and

6

systematic errors in the trajectory integration. It is a most powerful overallaccur-
acy determination. The mechanization of the closed loop accuracy check has been
explained earlier in Section 2.1.3. The closure miss in this check is the net result
of the contributions from all error sources, and the individual contributions are not
separable, in general. This powerful technique has potential applicability to other

trajectory computation programs for different purposes.
2.2.3 Typical Accuracy Data

Table 2-1 displays some typical data from single-precision pro-

gram accuracy tests. The closure miss data are the results of closed-

loop accuracy checks for the different trajectories, and the search
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noise level in each case is for a trajectory search in the forward di-
rection. Comparison of the first two examples indicates the error
contribution of a phase change, and the last example shows the im-
provement obtained by optimizing the time step scaling factor. Ex-
ample 3 shows typical accuracy of the program for a full interplane-
tary trajectory with all error sources contributing in full measure

to the results.

TABLE 2-1

PROGRAM ACCURACY DATA

(Single Precision Computations)

RMS Search Closure
Trajectory Noise Level Miss

1. Point just inside Mar-
tian sphere of influence
to a target point 5000 km
above planet surface (tra-
jectory search and closed-~
loop check).

0.2km 5.4km

2, Point on same trajec-

tory just outside Martian

sphere of influence to 3 105
same target point (search

and closed-loop check).

3. Earth-Mars 258 day trans-
fer, target point 5000 km a-
bove planet surface (search
and closed-loop check)

65 5466

4, Midcourse point 120 days
from Earth to same target point
at Mars for the above 258

day trajectory (search and
closed-loop check for dif-
ferent time step scaling factors)

SF = ,050 10.3 1084

SF = .100 14.0 269
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CHAPTER III

COMPUTATION METHODS AND TECHNIQUES

The computation methods and techniques used in the program will
be discussed in some detail in this section., The discussion will
point out some acute problems associated with various techniques that

have been attempted.

3.1 State Intergration Method

Reference 3 describes the Encke method as it is used in this

program, The fundamental vector equation of motion is

a“r Ho n d r
— + _pbri r = - Z Mk =% + =k = éd (3.1)
dt2 r3 - d 3 r 3
k=1 k k
where: is the true position of the spacecraft with respect to
the primary body.
upri= GMpri is the product of the universal gravitational constant
and the mass of the primary body (the spacecraft mass
is neglected with respect to the masses of the planets),
The summation is over all bodies other than the primary
body.
Hk is the product of universal gravitational constant and
the mass of the kth body.
gk is the spacecraft position with respect to the kth body,
Iy is the position of the kth body with respect to the

primary body.

The primary body is defined to be the one which exerts the largest

gravitational force on the spacecraft at any point on the trajectory:
that is, the spacecraft flies primarily under the gravitational in-
fluence of the primary body, and the gravitational attractions of the

remaining bodies constitute a disturbing force which causes the tra-
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jectory to be perturbed from a simple two-body trajectory. The primary
body changes during the course of the trajectory, and the "phase" of
the trajectory is identified by the primary body. For example, in the
injection phase the primary body is the launch planet; in the mid-
course phase it is the Sun; and in the terminal phise it is the tar-
get pl-net, The method of phase determination and ch3nging in the
program is discussed in Section 3.6.

In the Encke method at a time t0 (known as a rectification time)
the true position and velocity vectors g(to) ind z(to) define an oscu-
lating conic orbit, 1In the program terminology this is called the
Encke conic to differentiate it from an osculating conic which the pro-
gram can compute At any time point if an input control command is
given. The Encke conic is the solution to the homogeneous portion of
Equation (3.1):

d
Lenc ugri (3.2)
+ r = 0
2 3 =enc
at r
enc

The Encke conic computation is done in the ENCEN subroutine. At a
time t the true velocity and position are the sum of the Encke conic
velocity and position and the increments caused by the disturbing

forces:

r{t) = genc(t) + b(t)
vit) = _zenc(t) + v(t) (3.3)

The differential equation of 8(t) is derived from (3.1) using (3.2)
and (3.3):

(3.4)

This is the basic trajectory equation integrated numerically in the
INTEG subroutine., Both terms on the right side of (3.4) are computed

in the GRAVF® subroutine. Both subroutines perform additional compu-
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tations for the state transition matrix integration, as described be-

low.

3,2 State Transition Matrix Integration Method

The derivation of the state transition matrix and its applications
to simplified interplanetary guidance are described in detail in re-
ference 2, The matrix relates the propagation of small perturbations

in the state vector along . reference trajectory according to the

equation:
, = L 8%,
653 le X, (3.5)
where
r () YV .
x(t) = - is on the state vector at time t
- v (1) J on'a reference trajectory
'51“1) b
bx, is the state error at ty
5x . is the state error at t.
s J
C.. is a (6x6) matrix relating 6x. to Ax.
ji = =i

If the state errors are small, the linearized state transition matrix

is

.. = %) (3.6)
Ji Ax

Cji is partitioned into four (3x3) submatrices in the following manner

3r . dr .,
= =]
My, N Ar Ay,

cyy = ] J = ‘1 (3.7)
J Sji Tji dv. Av,
or. v,
=i —i

and it is further shown in Reference 2 that Cji obeys the following

differential equation:
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where the (3x3) matrix Gj

fined by the position variationsl equation

L

daMm

dat .

ds..
—1r
dtj

dT.

dat.
J

5;(tj)

Tii

(3.8)

is the gravitational gradient matrix de-

(3.9)

Note that ti is fixed and tj varies, and C.iis a2 function of both t,
i

nd t..
J

gr :dient of the prim-ry body. denoted by Gpri'
vit tion 'l gradient of the disturbing bodies, denoted by G

J
where
G _.(t.) = “pri
pri’ j r(t.)
]
I3
n
Gpert(tj) = E: —
k=1 dk(

where the summation extends over all disturbing bodies and gk

is the (3x3) identity matrix

5
t.
J)

+

Gpert

G is recognized to consist of two parts. the gravitational

ind the result.int gr.-

T _ T
[ 3£th)£(tj) g(tj) g(tj)13]

k

spacecraft position with respect to the kth body.

pert’

Then

(3.10)

(3.11)

T _ T (3.12)
[3§k(tj)ék(tj) gk(tj) gk(tj)IJ

is the

Equation (3.8) is the basic matrix differential equation which is

integrated in the INTEG subroutine.

GRAVFg@ subroutine.

begins is

C..

11

I

The G matrix is computed in the

The initial condition from which the integration

6

the (6x6) identity matrix

- 24 -
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3 3 Numerical Integr.ation Technigue

Nystrgm's method of numerical integration is used in the program.
This technique is described in Reference 5 It is a one-step inte-
gration method which :pplies to second order differential eguations

of the special form

42
X - f(x) (3.14)

dt2
where X may be a scalar. vector, or matrix. The stite eguation (3.4)
is clearly of this form. ind the state transition matrix equ-tion

(3.8) can be easily converted to the same form s follows. Define

Ay
c.. = (3.15)
Jt B..

]l

where

]
i

.. = [M.. N..] (3x6)
Ji ji ji

5i T [Sji Tji] (3x6)

When these are substituted into (3.8), the result is

]
|

[an, . ]
- B..
dt. ji
dc. . ]
—_—]1 = -
dt. - -
J dB. .
dt. GjAjl
bt J “ud
Therefore
dzA.i
—ar G.A.. (3.16)
dtj2 331

Equation (3.16) is of the form (3.14).
The Nystrgm integration eaquations are given below for the general
form (3.14). Let
Y = 4@

dat
In the integration of the state equation (3.4) X corresponds to & and

Y corresponds to ¥. In the integration of the state transition matrix
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equation (3.8) or (3.16) X corresponds to Aji aind Y corresponds to

Bji' In this terminology the Nystrgm eguations are expressed as fol-
lows:
X ., = X + hé(x_,¥_.h)
(3.17)
Yn+l - Yn + hW(Xn,Yn,h)
where
= h .
@(Xn,Yn,h) = Y + ¢ (kl + 2k2) (3.18)
1
W - =
‘(Xn’Yn’h) 6(k1 + 4k2 + k3) (3.19)
k1 = f(xn) (3.20)
h h2
k, = £(X + 3 Y + g (3.21)
h2
k3 = f(Xn + hYn + E"ke) (3.22)
h = tn+1 - tn is the time step increment

The integrations of both (3.4) and (3.16) are performed in the
INTEG subroutine. The forcing function equ-tions (3.20), (3.21), ~»nd
(3.22) are evaluated with the use of three other subroutines. however.

The right side of Eauation (3.4) (the perturbing acceleration 2cting on
the spacecraft) and the grovitational gradient matrix G in equation
(3.16) sre computed in the GRAVF@ subroutine. The Encke conic posi-
tion »nd velocity vectors required for these computations are gen-
erated in the ENC@N subroutine, and the ploanet positions uare computed
in the EPHEM subroutine, These computations take place, of course,
once during each time step in the integration. When kl'kz’ and k3
have been computed then Equations (3.17) are evalu:ted using (3.18)
and (3.19).

The Nystrgm techniue is self-starting and achieves 1 high order
of ~ccur-.cy with comput-tion 1l simplicity. The formulation used in
the program yields results with truncation errors proportionl to

h4: higher precision Nystrgm formul-tions are avail 'ble(Reference 5) .,

3 4 Coni~ Computation Method

The most difficult problem experienced in the preparation of this
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program has been the accurate computation of the conic position and

velocity Lonc and Yene used in the Encke integration method. This re-
sult may perhaps be surprising, since computation of conic orbits is
generally considered to be straightforward. However, the conic equa-
tions are critically sensitive to computational imprecision in the
case of a hyperbolic orbit in the vicinity of & planet. The conic e-
guations are not so sensitive in the case of an elliptical orbit, and
any of the usual formulations of Kepler's problem for an elliptical
orbit can yield acceptable computational accuracy. Battin's universal
formulation (Reference 3) ulso exhibits the critical sensitivity to
computational imprecision in the case of hyperbolic orbits. Both the
Battin formulation and the standard conic formulation were tried un-
successfully in the program,

There are two deleterious effects of computational imprecision in
the conic equations for hyperbolic orbits: (1) the iterative solution
of Kepler's equation fails to converge to within an uacceptable toler-
ance, and (2) the error in the iteration variable propagates exponen-
tially in the computation of Xene and Vene* These effects result in
intolerable errors in single-precision trajectory computation. A new
formulation of the hyperbolic conic equations has been devised to a-
chieve high precision computation. This new formulation consists of
both an advantageous change of variable in Kepler's equation and a
careful grouping of terms in the equations to maximize computational
precision. The new formulation has completely avercome the convergence
failure in Kepler's equation and has achieved a very significant im-
provement in the propagation of errors in the iteration variable.

The discussion below will describe the precision problem for the
standard hyperbolic formulation. The same argument applies generally
to the Battin universal formulation. The new formulation will be de-
scribed, and error propagations in the two formulations will then be
compared.

The computation of Zenc and Yene is, of course, Kepler's problem:
given I, and Yy at a time to with respect to a primary gravitating
body, determine the parameters of the conic orbit and compute the posi-
tion and velocity ¢

>enc
illustrates the problem for a hyperbolic orbit. The Kepler equation

(t) and v (t) at a later time t. Figure 3.1
~enc

for this case has the form

ra.Vv r
At = -bH + 220 [cosh AH - 1] + (1 + a—O) sinh AH  (3.23)
VUa

3
a
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Figure 3.1 Kepler's probiem for hyperbolic orbit



where
W is the gravitational constant of the primary body

a is the semimajor axis of the hyperbolic orbit (positive)

At t-t . is the known time increment
AH = H-H, is the incremental change of the hyperbolic dNOMaly

r

o O ©

= i !
magnitude ygol

AH is determined by an iterative solution of this equation, and then

Eenc(t) and genc(t) are determined from
Eone = [1 - %O(cosh AH - 1)] Iy + [&;0 . ¥ (cosh AH-1)
+ rg \’3 sinh AH] Yo (3.24)
Vene = - [W%' sinh AH]EO + [1 - 2 (cosh aH — 1)] v, (3.25)
As a trajectory approaches a planet, X, and v, are first defined
at the planet sphere of influence, and the scalar product Iy.¥, is a

large negative number. For the case of a close pass of the planet,
the semimajor axis a will be of the order of a planet radius. Typical

values of £y at the sphere of influence are more than 100 planet radii.
X

Hence the coefficient (1 + ;Q ) in (3.23) is of the order of 100. The
Lo
coefricient T is of the same order of magnitude since
r 2 Ln.V 2 I XV 2
1+ 2 - 2= = e?= 1+ 2 (3.26)
VlJa

where e is the eccentricity of the hyperbola with typical values of
about 2., Consequently, when AH is of a reasonable size, the last two
terms of (3.23) are large, of the same order of magnitude, and opposite
in sign, and single precision computation results in both appreciable
errors in AH and nonconvergence in the iteration.

On the IBM 7094, which is limited to 8 decimal digit single pre-
cision numbers, the tightest usable tolerance in a ratio test in the
AH iteration is about 1 x 10—7. Our experience has been that a Newton
iteration for AH failed to converge for values of AH larger than about

2 for a case with the typical numbers mentioned above.
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The convergence problem is not experienced on the outbound portion
of the hyperbola because both of the large terms in (3.23) are posi-
tive. This formulation does, however, suffer the other unfortunate
disadvantage that an error in AH propagates exponentially in genc(t)
and v (t). Differentiating (3.24) and (3.25) with respect to AH

—enc
shows this property:

a . a . a
= —fj —— & p2 a
25 S, ¢ sinhAHL A(AH)Eg +[ F rq.vysinhdH + rd\/u coshAH | 6(8H) v,

0
(3.27)
- _ Q;a _a_. 1l __dr _
ﬁgenc— rr, oshAH G(AH)gO ;31nhAH5(AH)go- r d(bH) 8 (AH) Yenc 1%
(3.28)

All coefficients in these equations contain exponential multipliers
which rapidly increase the magnitudes of the errors as the transfer
lengthens.

The new formulation overcomes the iteration convergence problem
and achieves a very significant improvement in error propagation. The
formulation is derived by a change of variables. Define a new vari-
able x by the relation

I . (8H >0) (3.29)
Kepler's equation can be put into the following two forms by substitu-

tion of (3.29) into (3.23) and algebraic rearrangement of terms:

K,
EL x* 4+ K,x - t_ - (14x) log(l+x) = 0 (x 20.3) (3.30)
— S x4+ (KZ— l)x - S L(x) =0 (x < 0.3) (3.31)
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where

2
r..v r r..v r.v
K, = 72=2 + 1+ 2] - R0, L 1) gy, >0 (3.32)
Vua a Vua
2
R PR
= - =2 (xg+ vy < 0) (3.33)
0-Y9 To%o 1
VHa H
r.v C
0'0
K, = -1 -t (3.34)
tm = <V_"L3 Cvt (3.35)
a
v 2
1 = % - = (3.36)
a 0
2
L(x) = =— 4+ x - (1l4+x) log(l+x) (3.37)
2

1
3
x
Y et
- (n+2) (n+3)

A detailed derivation of these eguations is given in Appendix A.

Equation (3.31) is used for very short transfers (x < 0.3 corre-
sponds approximately to AH < 0.25), and (3.30) is used for all but
very short transfers. The terms in these two eguations have been
especially grouped to maximize computational precision. The constant
K, in (3.30) must be computed precisely, since it has a predominant
effect for large transfers. Conseqguently, the alternative forms in
equations (3.32) and (3.33) are used. The L(x) function in Eguation
(3.31) is evaluated by the power series expansion (3.37), the series
being truncated when the sum in the computer is unchanged by the addi-
tion of the next term i,e., when computational precision is exceeded.

The conic state equations are derived by substituting (3.29) into
(3.24) and (3.25) with the results (see Appendix A):
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i 2 x(1+%)
a X a X a 2
t) = - | & - . e, S =
Lenc(®) =1~ 2 (1+x’ Lo +[2u Ly ¥ (l+x + ro\/: (1+x) |0
(3.38)
X
1[“7 x(1+3) i 2
v (t) = - vHa o4l -2 . S v (3.39)
=enc re 1+x =0 2r 1+x -0
The effect of an error in x is 5
2 2 9 l+x+E
2X+X a 2X4X a A
Ar =-—9—————6xr+-—r.v ——+r3/:’-——— Ex v
2 2
~enc 2rO (14%) =0 2u =0 (1+x) U (1+x)z -0
(3.40
x2
\/ T 14X+ 2
bv =-¥a 2 4. -a 2x#xl .0 _lg_r_gx(v_v) (3.41)
~enc rry, (1+x)2 =0 2r (l+x)2 =0 r dx - 0

A comparison of (3.27) and (3.28) with (3.40) and (3.41) verifies that
the latter equations show an improvement in the propagation of errors
in the iteration variables. The errors &(AH) and 5x are random vari-
ables and may be considered to be uniformly distributed within the
range of the iteration tolerance, i.e.,

0 < 5_(2_3). <1x 10—7 ({uniformly distributed)
(3.42)

bx

0 < ” <1x 10 (uniformly distributed)

In Appendix A it is shown thatthe improvement in the error propagation
is in the ratio of

AH SH (3.43)

For a transfer from the sphere of influence to a peripoint near a pla-
net AH can be of the order of 10, The ratio (3.43) shows that the
expected improvement in accuracy is the same order of magnitude.

The new formulation Eguations (3.30) through (3,39) are used in

the program for the case At {(or AH)>0. In the case At <0 the variable x
defined in Eq. (3.29) ranges only in the interval (1,0) for all negative At (orAH),
and precision would be lost in using that form. An obvious alternative is to define
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l + x= e-AH for At < 0O

and rederive the above equations. However, it turns out to be simpler
and just as accurate to reverse the sign of Y5 and At, compute a nega-
tive v(t) using the above equations, and then reverse its sign to ob-

tain the final desired value. This is the method used in the program,

3.5 Time Step Computation Method

The time step is computed in the program from the formula

l .
T - —
h. = K |tr(G.G. 4 3.4
3+l [ ( J ] ] ( 4
where hj+l = tj+1 - tj 1s the time step between the jth and (j+1)th
points
Gj is the gravity gradient matrix at the jth point
K is the scaling constant set by an input data card (a

typical value is about 0.1 in the single-precision ver-

sion) .,
This formula is derived by an argument based on the state transition
matrix integration. This computation is very sensitive to numerical
inaccuracies, and it turns out that a time =tep which is chosen for
sufficient accuracy in the state transition matrix integration will
also give satisfactory accuracy in the state integration by the Encke
method. The method of derivation is explained in Appendix B. There
is a further useful relation for computing the trace in (3.44) which
should be pointed out here. Let 9n be the (m,n)th element of G

¢ [o]

3 3

T
tr(GG') = g 2 (3.45)
2;; 2;; mn

Since G varies approximately as l/r3, where r is the distance of

Then the trace is computed by

the spacecraft from the primary body, the time step varies approximate-

2
ly as r3/ .

In planet-centered hyperbolic phases two special problems must
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be considered, Firstly, it is found that the magnitudes of the G ma-
trix elements vary considerably over a time step, so that an"average"
value of G must be used for each time step in order to make the time
step lengths consistent inbound and outbound. This is done in the pro-
gram by a linear differential correction to the value given by (3.44).
Secondly, the computed time steps can be very large in the region near
the asymptotes of a hyperbolic trajectory. Since the phase test is
made in the program at the end of each time step, the phase change fram

planet to sun-centered coordinates can be unnecessarily delayed un-

less a limit is placed on the allowable time step magnitude. A limit
of one day in hyperbolic phases 1s used in the program.

In the double-precision version of the program the time step is
computed in the same manner, except that the scale factor K is reduced.

A typical value of K is about .0l in the double-precision version.

3,6 Trajectory Phase Determination Method

The trajectory phase designates which of the solar system bodies
is the primary body. The phase determination is based on the gravita-
tional gradient matrix G defined in (3.10) through (3.12). The start-
ing phase in a trajectory is always known from the specification of
the starting planet (or the Sun) in the input data. Thereafter, a
phase test is made at the end of each t;me step in the integration.

T

. : _ ) wi G
The test consists of comparing tr(GprlG prl) with tr(Gpert pert) .

where Gpriand Gpert are the two components of G defined in (3.11) and
(3.1z). As long as

T

pertG pert)

tr (GpriGTpri) > tr(c
the current phase remains unchanged. Vvhen the relation above does not
hold, a phase change occurs.

The phase change procedure is as follows. If the old primary
body were a planet, the new primary body is the Sun. If, on the other
h ind, the old primary body were the Sun, then the nearest planet to
the spacecraft is selected to be the new primary body. The planets are
never near enough together so that an ambiguity can occur in this se-
lection procedure. The coordinate system origin is changed from the
old to the new primary body, and this, of course, requires appropriate
combination of spacecraft and primary body position and velocity vec-
tors. However, since no coordinate rotation is done, no change in the

state transition matrix occurs at phase change points,
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3.7 Trajectory Search Method

The program will perform an iterative search for a trajectory be-
tween a starting point and an endpoint with a fixed time of flight,
The search works for either forward or backward integration, The sub-
matrix N of the state transition matrix in Zquation (3.7) relates end-
point position deviations to beginning point velocity variations, and
the N matrix is used to implement the search procedure,

The first search iteration begins at the fixed starting point

with an initial guess for the starting velocity, and a trajectory is
computed toward the target point. The trajectory terminates when the

fixed time of flight is reached, and the position miss vector Agm is

computed:
br, = x(tg) - Ltarg (3.46)
where g(tf) is the computed trajectory endpoint at the time of
flight te-
r is the intended target point,

~targ

Eguation (3.7), where i denotes the starting point and j is now the
endpoint f, gives a linear approximation to the deviation in initial

velocity which causes the miss A;m:
A!i = N_. Agm (3.47)

Therefore, in order to null the miss, a new starting velocity is com-
puted for the next trajectory iteration by simply subtracting A!i from
the initial starting velocity., This same procedure continues for sub-
sequent iterations, and the general relation for the starting velocity
for the (n + 1)th iteration in terms of the miss computed on the nth

iteration is

- n71 Ar (3.48)

v,
Thel n n n

Note that since a new state transition matrix is computed in each
iteration, the correct Nfi is available at the end of each iteration
automatically. The search"terminates when the magnitude of the miss
vector becomes less than (or equal to) a specifiable tolerance which
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is set by an input data card.

The search computations are linear, yet the search is relatively
efficient because the state transition matrix is updated in each itera-
tion. The linear search works gquite well when the miss is so large *
that the endpoint is outside the sphere of influence of the target
planet., In that case the target point becomes referenced to the Sun,
rather than the planet, and the non-linear planet influences are not
strong, However, inside the sphere of influence of the target planet
the problem becomes highly non-linear if the target point is near the
planet because the miss vector br, may be as large as, or even larger
than, the endpoint position vector in the planet-referenced coordi-
nates,

In most cases tested thus far even in the most non-linear region
the linear search computations reduce the miss by at least a fuctor of
two with each iteration. These tests also indicate good convergence
when the initial guess trajectory misses the target planet by as much
as one-half the radial distance of the planet from the Sun. Table 3-1
shows some typical results of trajectory searches which have been per-
formed.

Nonconvergence of the search is experienced often in orbits in
which the heliocentric transfer angle is near 180 degrees. The reason
is the singularity in the computation of the out-of-plane velocity
correction; the linear search computations break down as the transfer
angle nears 180 degrees unless the first guess for the out-of-plane
initial velocity component is very good. When such a case occurs, it
is necessary to vary the out-of-plane initial velocity component manu-
ally until a value is found for which the search converges. The 258
day Mars transfer listed in Table 3-1 has o heliocentric transfer an-
gle of approximately 178 degrees, and illustrates thut the search can
be done successfully by this method.

Since the search converges well for large initial misses, the
determination of an initial guess for a starting velocity is not high-
ly critical. However, the better the initial guess, the more efficient
the search will be, clearly. The following simple patched-conic pro-
cedure has been successfully used to obtain an initial starting velo-
city:

1. Find a heliocentric elliptical transfer between the target

position on the arrival date and the initial position on the

starting date, If these two positions are near planets, use the

planet positions for the first guess.
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2, Compute the elliptical velocity at the initial point. 1If the

initial point is outside the sphere of influence of a planet, this
is the initial guess velocity. Otherwise a further computation

is necessary.

3. Refer this elliptical velocity to the starting planet by sim-

ply subtracting the planet's velocity from the elliptical velocity
vectorially. It is well to use the planet's velocity a few days

after injection to account for the timne to reach the sphere of

influence from injection, This effects an angular correction of
a few degrees which considerably refines the initial guess. The
resulting velocity referenced to the starting planet is taken to
be the asymptotic velocity for a hyperbolic transfer from the in-
jection point to the sphere of influence,

4, Compute the injection velocity at the injection point (which
should be previously chosen or specified) to achieve the asympto-
tic velocity computed in step 3. This result is the initial

guess velocity.

Some caution must be used in this procedure to ensure that the
target point is accessible ( if it is near a planet) by a hyperbolic
approach from the direction of the elliptical transfer. Also, the in-
jection point with respect to the launch planet must be chosen to make
the asymptotic velocity achievable by a hyperbolic transfer. Reference

3 gives all pertinent conic equations for these computations,
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CHAPTER IV
PROGRAM STRUCTURE AND FUNCTIONAL FLOW

The explanation of the program structure and functional flow
given in this chapter relates directly to the single-precision version.
The functional organization of the double-precision version is identi-
cal with that of the single-precision version, but the detailed pro-
gram structures are different in that the double-precision version re-
quires some additional support subprograms.

The single-precision version is organized into a main control

program, designated as MAIN, and the following subprograms:

INTEG
ENC@N
GRAVF@
EPHEM
@gscgN P
PRINTT
TIME
AXB ),

Subroutine subprograms

VMAG Function subprograms

ADZTB
This chapter describes the primary functions of MAIN and each of the

subprograms and shows the program functional flow,

4.1 MAIN Program

The MAIN program establishes and controls the entire functional
flow. Figure 4-1 is the program functional flow diagram mechanized by
MAIN., The first operation is reading in and printing out the informa-
tion on the input data cards. This makes available all input data in
original format for convenient reference.

All initialization operations on the input data which are un-
changed in a trajectory search are performed in the pre-initialization

functional block., These include conversion of times entered in days,
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hours, minutes, and seconds into seconds referenced to start time, set-
ting up invariant constants used in the program, initializing the
ephemeris computation subroutine (EPHEM), and printing an identifica-
tion record for the trajectory computation to be performed.

The initializing operations which are repeated at the beginning
of each search cycle include setting up phase-dependent constants,
initial conditions for the state and state transition matrix integra-
tions, and initialization of the Encke conic computation subroutine
(ENC@N). These are performed following the search cycle return point
designated as point A in Figure 4-1,

An initial point record is printed following the initialization
for each of the following three conditions: (1) Mode 1 is the opera~
ting mode; (2) the last search cycle in Modes 2 or 3; (3) each search
cycle if an input data control constant has been set to cause a print-
out each cycle of the search. This record has the standard informa-
tion described in Section 2.1.6, and it lists all trajectory initial
conditions.

Point B in Figure 4-1 is the return point on an inner loop in the
program which is recycled with each time step. The first operation in
this loop is the time step computation by the method described in Sec-
tion 3.5. This is followed by an endpoint proximity test to determine
if the trajectory end time is less than twice the time step from the
present time, If it is, the time step is modified to be half the re-
maining time and appropriate flags are set up to effect termination on
the following cycle. Otherwise, the next functional test is entered
immediately.

The special printout test determines whether a time point for a
special printout lies within the present time step. If so, the spe-
cial computations and printout occur as described in Section 2.1.6.4.

The numerical integration is periormed in the INTEG subroutine
which in turn calls ENC@N to compute the conic position and velocity
used in the Encke method, EPHEM to compute the planet positions and
GRAVF@ to compute the gravitational perturbing acceleration and gravi-
ty gradient matrix used in the integration.

A phase test occurs at the end of each integration step as des~
cribed in Section 3.6 to determine whether the current primary body is
correct, If not, a phase change occurs, involving the determination
of the new reference body, computation of velocity and position of the
reference body, computation of velocity and position of the reference
bodies by the EPHEM subroutine, and printout of 0ld and new phase in-
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formation as described in Section 2,1.6. In Mode 1 the normal time

step data printout follows the phase test immediately, if no phase
change occurs. The trajectory endpoint is indicated by a flag set ear-
lier in the endpoint proximity test, If the endpoint has not been
reached, the ENC@N rectification test is performed, ENC@N is rectified
if necessary and a transfer takes place to begin a new time step. The
rectification test is simply described with reference to equation (3.,3);

rectification must occur if

[lad

|
1

J
' v “ 3 «
) (single-precision version)

&>

[@]

Rectification is simply reinitialization of the Encke conic at the cur-
rent true state,

If the endpoint has been reached, an endpoint data printout occurs
if the operating mode is Mode 1, or if this endpoint ends the last
search cycle in Modes 2 or 3, or if there is a command to print every
search cycle. This printout is followed by computation and printout
of the target point miss,

If the current cycle is the last search cycle, the trajectory com-
putations terminate for the present case by transferring program con-
trol to START to enable a subsequent case to begin. Otherwise, the
search computations are performed, as described in section 3.7, to up-
date the starting velocity. Then, if the operating mode is Mode 1,
the search computation results are printed as described in Section
2.1.6 and control is transferred to START. Otherwise, the next cycle
of the trajectory search begins by returning to the initialization of

the new cycle.

4,2 INTEG Subroutine

INTEG per forms the numerical integration of both the state and
the state transition matrices by the methods described in Sections 3.1l
through 3.3.

INTEG is called by the MAIN program in both the numerical inte-
gration functional block and special data printout loop shown in Fig-

ure 4-1. The call statement is
CALL INTEG (H)

The argument H is the time step computed in MAIN. INTEG returns the
position and velocity increments 8 and ¥ defined in Section 3.1 and
the A and B matrices defined in Section 3.3. This information, as

well as other information shared between two or more subprograms, is
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placedin C@MM@IN storage,

INTEG in turn calls ENC@ZN, EPHEM, and GRAVFY.

4,3 ENC@N Subroutine

ENC@N computes the conic position and velocity used in the Encke
integration method. There are two primary branches in the subroutine,
one for rectification and one for computation of the conic state. The
.omputation branch h:is two sub-branches, one for ellipses and one for

hyperbolae. The call statement is °
CALL ENC@N (IENC)

The argument IENC is a control constant which selects the desired
branch, If IENC is 1, the rectification branch is selected. Rectifi-
cation makes use of the current true state to determine a new oscula-
ting (Encke) conic to be used in all subsequent computations until rec-
tification reoccurs. If IENC is 0, the computation branch is selected.
If the Encke conic is an ellipse, the state computations are per formed
by a normal method (Chapter 2, reference 3); if the conic is an hyper-
bola, the special formulation described in Section 3.4 is used.

All variables used and the conic state returned by ENC@N are
placed in CPMM@N storage. ENC@N is called by MAIN for purposes of
rectification and by INTEG for conic state computation., ENC@N in turn
calls TIME and GRAVF@ in the rectification branch and prints a recti-
fication message giving the time of rectification and identifying the

Encke conic type.

4.4 GRAVF@ Subroutine

This subroutine computes the right hand side of Equation (3.4)
used in the state integration and the gravitational gradient matrix
Gpri and Gpert defined in equations (3,10) through (3.12) used in the
state transition matrix integration. GRAVF@ is called normally by
INTEG for these computations, and it is also called by ENC@N at each
rectification point to reinitialize the computations, The call state-

ment is
CALL GRAVF¢@g (UA, GF@RCE)

UA is a three-dimensional input vector corresponding to § in equation
(3.4). GFRCE 1is a threerdimensional vector which is the acceleration
(right hand side of equation (3.4)) returned by GRAVFZ. All other
quantities used and returned by the subroutine are in CZMMZN storage,
GRAVF@ calls no other subroutines.
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4,5 EPHEM Subroutine

This subroutine computes the planet ephemerides by the osculating
conic method described in Section 2.1.4. There are two branches, one
for initialization and one for computation. The initialization branch
establishes the osculating ellipses approximating the planet orbits
from the reference ephemerides entered as program input data.

EPHEM is called by MAIN for initialization and for computation of
primary body ephemerides at the phase change points, and by INTEG for
computation of planet positions for disturbing force computation. The
call statement is

CALL EPHEM (N, IEPH, UP, VP)

N is the identifying number of the planet whose ephemerides are to be
computed. IEPH is a constant controlling the following operations
according to the specified value:
2 - initialization
1 - computation of planet position and velocity (required
at phase change points only)

0 - computation of planet position only (position only is

required in perturbing accelerztion and gravity gradient
matrix computations).

UP and VP are, respectively, three-dimensional position and velocity
returned by the subroutine,
EPHEM calls no other subroutines.

4,6 PRINTT Subroutine

This subroutine does all of the normal printing for the program
described in Section 2,1,6. PRINTT is called by MAIN only. The call
statement is

CALL PRINTT (IPRINT,N@SC)

IPRINT is a control constant selecting the record format to be printed.
N@gSC is a control constant which determines whether @SC@N is called
following the printout. PRINTT also calls the TIME subroutine, Fur-

ther detailed description is left to Reference 1.

4,7 gscegN Subroutine

@sCgN computes the osculating conic data described in Section
2.1.7. @SC@N is an optional subroutine; a control constant in the
program input data determines whether or not the subroutine is used.
@SCgN is called only by the PRINTT subroutine, and, if it is to be
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used in the program, it is called each time a data printout occurs.
Further detailed description of the computations is left to Reference
1.

4,8 TIME Subroutine

This subroutine converts time, which is in units of seconds in
the program computations, into days, hours, minutes, and seconds. It
is used always for the purpose of printing time in the more useful
form. TIME is called by ENC@N and PRINTT. The call statement is

CALL TIME (TARG,JDAY,JHR, JMIN,6 XSEC)
TARG is the input time argument in seconds. The other arguments in
the call statement are, respectively, the days, hours, minutes, and
seconds returned by the subroutine. The input time argument is nega-
tive for trajectory integrations backward in time; however, the days,
hours, minutes, and seconds returned are always positive, and they
must be interpreted as the elapsed time from start in either the posi-

tive or negative direction as the case may be,

4.9 AXB Subroutine

AXB computes the cross product of two vectors. It is called by
MAIN and several of the other subroutines where vector products are
required in the computation. The call statement is
CALL AXB(A,B, VPR@D)
A and B are three-dimensional vectors, and VPR@D is the three-dimen-
sional vector product returned by the subroutine. The vector compu-

tation is

VPRGD = A x B

4,10 VMAG Function Subprogram
VMAG computes the magnitude of a vector, It is used throughout

the program wherever vector magnitudes are regquired in computations,
The specification statement is

VMAG (V)
V is a three-dimensional vector, and the subprogram returns the square

root of the sum of the squares of the three components,

4,11 ADZTB Function Subprogram

AD@TB computes the scalar product of two vectors. It is used
throughout the program wherever scalar products are required in compu-

tations. The specification statement is
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ADETB (A, B)
A and B are three-dimensional vectors, and the program returns the sca-

lar product A-B.
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APPENDIX A

DERIVATION OF NEW FORMULATION OF KEPLER'S
PROBLEM FOR HYPERBOLAE

The purpose of this Appendix is to derive the equations of the new formula-

tion in the form given in Section 3.4 and to show the improvement in the error pro-

pagation characteristics. The equations of the standard conic formulation of

Kepler's problem for hyperbolae given in Section 3.4 are repeated here for con-
venient reference:

Kepler's equation:

r eV T
P _ . -0 — ' _ ) 0} .. )
33 At AH + W— cosh AH -1 + 1+ 2 sinh AH (j. 23)

State equations:

I one (AH)  _ [1 -2 (cosh AH—I)]EO

0
» a a .
+[;-£O Y9 (coshAH-1) + IO"E sinh AH]XO (3. 24)
v (AH) = - 2 sinh AHr, + |1 -Z(cosh AH -1)| v (3. 25)
—enc rrO =0 r -0

(In this derivation equations appearing in Section 3.4 will have Section 3 equation
numbers.)

The derivation begins with Kepler's equation. Let

BN b=
th a3 At (3.35)

Expressing cosh AH and sinh AH in terms of eAH

and e_AH and gathering like
terms gives:

The vV [r v r Th, V r _
t, = "OH- 0_0+%'0_0 +[1+T0) eAH+%_O‘0- 1+a—0)eAH
ViE | v= Ve

(A. 1)
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Define Kl and KS’ constants for a given orbit:

2
r « V r TAhaeV r.v
KI;—_()_—_9+1+a_0):—0—0 f100 (3.32)
Vi l ViE H
I v Ir Tr A% Ir v 2 1
K,y _0°-0 _n +_0): =0°-0 [ 09 -1 (A.2)
ViZ ViE "

The equivalence expressed in these equations is readily established from the well

known energy integral for hyperbolae:
2 2 1

The following properties of Kl and K3 are also readily verified from well known

conic relations:

Where e is the eccentricity of the hyperbola

2 r . raeV
82:1+%:(1+39) -'Oi)
s Vi
h = |£O X XOI angular momentum per unit mass in orbit
T The V
(2) Ky > 0 always, since l + _ag > 07 =0 ¢, eZ >0
Via

K3 < 0 always for the same reason.
Make the following change of variable in (A.1):

AH L 14k AH = log(l +3%) (3. 29

and use (3.32) and (A.2) for the coefficients:

K, + K K K
) 1t K, 1 3 1
t = -log(l+x) ~—5— ¢ (1+x) + T(TTX-) (A.3)

m 2 2

Multiplying by 1 + x and clearing terms
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K3 Kl
(l+x)tm:—(l+x)log(l+x)--Z—-x+T x (1 +x) (A.4)

Regrouping the terms:

K, , [X; K,
5 x" = -t ) x-t_ - (l+x)log(l+x) = 0 (A.5)

Referring to (3.32) and (A. 2), define K& by

2
_ 3 B o _ ToVYo
K,= —F t T (l+?)_tm T TR -1 “tm

Then Kepler's equation becomes

K

—Z—l XZ+KZX-(1+X) log(l+x) = t (3.30)

K1 can be computed with high precision by the appropriate choice of two different

methods. [f r > 0, Kl is computed by Equation (3.32) directly, If Iy v0< 0,

o' Xo

then Kl can be a small difference of the two terms in (3.32), and a more precise

computation is

K = - pa (rne v

T, < 0) (3.33)

0

,_.
|
(=)
[ ]
<
o
]
————
—
+
H
|
—

The denominator of (3.33) is large and negative for this case.

K2 in Equation (3. 30) can normally be computed precisely in regions where
(3.30) would be sensitive to errors in K, K, becomes imprecise when
“o K2
t, = |1t T) , but then the —- X term dominates, greatly reducing the sensi-

tivity to error in K&'

There is, however, a case in which (3.30) is imprecise for small x. Consider
an outbound transfer with initial point near the peripoint. Then r, /a is of the
order of 1, x will be small for the first time step, and tm is very small. Then

KZ is of the order of 2, and tm is a function of a small difference between the
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second and third term on the left of (3. 3) and the second-order first term.
Consequently, for the case of small x (3. 30) is reformulated so that the left side

is separated into first, second, and higher order terms explicitly. We begin by

putting it into the form

Kl—l) 5 2
> x +(K2-l)x+ T+x ~(1l +x)log(l+x) = tm (A.6)

The last two terms in (A. 6) can be combined into the following power series

expansion:

= + 2 - (1+x)log(l+x)

1l

2 (- 1)
Z k+2) (k+3)
k=0

% L (%) < x<1) (A.7)

This relation is easily verified by expanding log (l+x) in a power series and com-
bining like terms on the left side. (A.T) is positive and well behaved at x=0.

Kepler's equation is finally expressed as

Ky -1 20 03
(K‘2 -y x + > x + x Li{x) = tm {(x < 0.3) (3.31)

The range limit is established simply by noting that (3. 30) is sufficiently precise

for larger values of x.

The state Equations (3. 24) and (3. 25) are expressed as functions of x

directly by substitution of the following identities:

2

cosh AH -1 = 7(’—1‘-;;; (A.8)

sinh AH = 2+ x° (A.9)
n IS :

The results are
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The propagation characteristics of errors in the iteration variables in the
two formulations are developed for a generalized comparison in the following man-
ner, Consider first an error in T enc (A H), 6£enc (AH), caused by an error in

the iteration variable AH in Equation (3. 24) compared with an error in X enc (x),

6£enc(x), caused by an error in the iteration variable x. That is, for a given trans-

fer time At we wish to compare the errors in the computed I enc (At) obtained from
the two formulations. Egs. (3.27) and (3. 40) give 6£enC(A H) and 6£enc(x)' They

are rewritten here in the following forms:

51 o (AH) = f (AH) 6(AH) r, +f,(AH) 6(AH) v, (A.10)
I—enc(x) B gl(x) bxry t gy(x) &x Yo (A.11)
where
f,(AH) = - 2 sinh AH
o
0
f,(AH) = 2 sinh AH + 2 h AH
2 K for Yo To¥ o ©°s
_ a 2% + x° (A.12)
gl = - & Extx
o} (1 +x)
2

X
go(x) = 2 r.v _?._x_+__>i + r ﬁ —2_1+X+?
2 b Z0T 0 gt O¥VE  (1+x

The covariance matrices for the errars can then be written as follows:

~ l |'T
Eng * [Zenc@H - 8 Toomm)| [ 6., (01 - Tr_, (&M
2 2 T T ™, .2 T
= 9AH {fl ToL t i1, (Eoi’-o+!oro )”z Yo¥o }
/] (A.13)
E = E—T)J-T
x [6£enc () - 1e:nc:txi ] [ Tenc™ - ¥Zonc *

2 2 T
L {81 IpIo +glgz(loio

(A.14)

These are matrix equations and the terms within the brackets are all constants. It

will now be shown that EAH is related to Ex by a scalar constant.

As was discussed in Section 3. 4, the iteration variable errors &§ (AH) and

6x-are uniformly distributed within the iteration tolerance:
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o< £8H < 1 x1077
(3.42)
0 < &% o 1x1077
= x =
From these relations we can write
S(AH) =AH 6n (A. 15)
§x = x6n (A. 16)
where 6n is a random variable uniformly distributed over the interval(0,1 x 10_7)‘
Then
2 2 2 2 — Z
or = 6(AH - F(AH~ = (AH) [6n2-6n] :(AH)ZO-: (A. 17)
o2 =5x2 -16_-2‘ 2t
< - 0x = xe (A. 18)

Substituting (A.17) and (A.18) into (A.13) and (A.14):
B 2 24,2 T T T 2 T
Eag = BH) 7, {fl oo * f1fz(-‘101'10 tYoXo )+ f2 Y0¥ } (A.19)

_o2_ 2 2 T T T 2 T
B, = xol o ron " 81%2(£ozo * YoZo >+ 8" vo¥o '} (&-20)
The right sides of Equations {A.19) and (A. 20) consist of the sum of three matrix
terms, each with a scalar coefficient. = We now consider the ratios of correspon-

ding coefficients. The ratio of the coefficients of the first terms is (substituting

from (A.12), (A.9) and (3. 29):

2, 2
(AH " Ap® sinn® AH
xZ,ng xZ (2x+x2')2
4(1 +x)
; 2.2
(AHZ (2x +x )Z , ,
- 4(1 +x) _ {AH)” (1+x
2 (2x+x2)2 x2
x
4(1 +x)
2 eAH 2
= (AH) Hl (A.21)
eK -
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The ratio of coefficients of the second terms is:

2 2 .
AmTf i, (AH) s»mhAH[—i‘IiO-XO s'mhAH+r0J% cosh AH"
5 - _
X B8 X
152 XZ(&x-i'x'd )i ey Zx+x2 +rf 1+X+E
2]z Yo T2 T Tz
204081 00 1?12
(AH)% (14x)°
=z
X
2f AH 2
= (AH) —eZT-l (A.22)

The ratio of coefficients of the third terms is:

(AH)ZfZZ (AH)Z[%E_O'XO sinh AH+r0ﬁ coshAH]Z
el on ) =23
2p =0 -0 (l+x)2 OV (1+x)l
2 2 AH 2
-————(AH)XZ(”") - (anl?® —:AH—I (A. 23)

It is evident from (A. 21) through (A. 23) that EAH and EX are related by a scalar

multiplier:

AH\ 2
_{AHe L2
E g .(——-———eAH_l ) E = k"E (A. 24)

The limiting behavior of k is

1) lim k = 1
AH—0
2) For AH large, k—AH

Consequently, the effects of iteration errors in the new x formulation are always

less than the effects of iteration errors in the AH formulation for all transfers

AH> 0.
The same analysis can be carried through for &v (AH) and &6v (x), with
—enc —enc

the same constant ratio resulting between the corresponding covariance matrices.
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APPENDIX B

TIME STEP FORMULA DERIVATICN

This Appendix describes the derivation of the time step Equation (3. 44),

repeated here for convenient reference:

1
L T, | 3
hyp) = K [tr(GjGj )] (3.44)

where hj 7 tj +1 't_j is the time step between the jth and (j+ 1)th points

Gj is the gravity gradient matrix at the jth point

K 1isa constant

The method of derivation begins with the assumption that Gj is constant over a
local region of the trajectory about the jth point. This permits a simple analytical
determination of the state transition matrix between the jth and (j+1)th points. The
error meachterm of the numerically integrated state transition matrix is then

taken to be approximately equal to the 5th order term in the Taylor series expan-
sion of the analytical result, since the Nystrgm technique is accurate to fourth
order. Requiring that this error be less than 10-8 times the analytic result yields

an expression from which Equation (3. 44) can be generalized.

The assumption that the gravity gradient matrix is constant over local
regions is relatively good in the midcourse phase of a trajectory. In the phasesof
a trajectory near a planet G does change significantly within a time step. In this
case, Equation (3.44) is still used, but a simple first order differential correction
to h is introduced. The derivation suggests a value for the constant K; however,
K has been made a program control constant so that time step scaling can be done

by means of an input data card.
The derivation outlined above begins with Equation (3. 9)

67, = G, 6. 3.9
=j i°% (3-9)

The matrix Gj defined in Equations (3. 10) through (3.12) is real and symmetric.
It therefore has real eigenvalues, which may be positive, negative, or zero, and

eigenvectors which can be orthonormalized. Then, a diagonalizing matrix Q
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can always be found to transform (3. 9) into
62, = Qler, = QTG.Q bz, (B.1)
=] =) J =J

where QTGJ.Q is a diagonal matrix with the eigenvalues of Gj along the principle

diagonal.

Ao 0 0
T
RTGAQ = |0 A 0 (B.2)
J 2
0 0 Ny

In this form the three component equations of (B. 1) can be considered separately.

Consider, for example, the first component equation:
62.1 = )\1 62l (B.3)

The following solutions are possible:

)\l < 0:
52, (t))
621 (tj+h) = le(tj)c051/x1 h+ ——3 s'm‘/)\l h
“)\l
(B .4)
5z  (t;+h) = b2 (t) cosyn] h -4/A] 6z, (t) sinyfA| h
)\1 = 0
62) (t;+h) = 6z (t) + 6% () h
(B.5)
ézl (tj+h) = 621 (tj)

S 0:
- 62, (t.)
5z) (t;+h) = bz (t) coshyA| b + _—-_J-)\ smhﬁ‘l h
. (B.6)

62, (tj+h) = 6il(tj) cosh /xl' h +,/x1‘ 6z, (tj) sith)Tf h

In these equations the state errors at tj are the initial conditions, and each of the

three component equations has one of the three solution forms above.
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Suppose for the moment that )\l < 0 and (B.4) is the analytical relation be-

tween the components of the state error at tj +h and tj' The transition matrix for

these components is obviously

1 .
COS\/)\_I‘ h ﬁ?- Sln-m h

(B.7)

Ct.m,e. T
J J

-\ﬁT sinﬁzh cos-\[)\—; h J
L

The Nystrom numerical integration for the state transition matrix is accur-

ate to fourth order. Therefore, the first term after the fourth order term in a
Taylor series expansion for each of the elements in (B.7) is approximately equal
to the error in the numerical integration. It is readily apparent that the larger
errors must be in the integration of the sine elements in (B-7), since the error is
of the fifth order in h while the error in the cosine element integration is of the
sixth order. The accuracy requirement is that the ratio of the error term to the
lowest order term must be not more than 1 x 10_8. For each of the two sine ele-

ments in (B.7) this turns out to be

W om

o= < lx 1078
sI/x| h
or
1
-6|4
ho<|l2x10 _ 033 (B. 8)

The same analysis can be applied to the case xl > 0 with the same result
(B.8) for h. In the case )‘l = 0 the implication is that the nume rical integration
should give negligible errors for any value of h within the interval in which the
initial assumption is valid.

To solve for the eigenvalues and eigenvectors of G at each time point is a
complex process and is not done in the program. The square root of the sum of
the squares of the eigenvalues is used in place of )\l in Equation (B.8). It may be
shown that

3

T N 2

tr (G.G.") = X,
G657 .Ll
i=

{B.9)

1
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tr (GGT) is easily computed in the program. The fourth root of (B.9) is used in

place of A, in (B.8), a scaling constant K in place of the fixed constant, and (3. 44)

1
then results.

The differential correction to the time step in hyperbolic orbits is deter-

3/2_

mined in the following manner. Note first that h varies approximately with r

h & «a r3/‘2 (B.10)
Then
dh ~ % o rl/Z dr
~ 3h dr (B.11)
2 r
Approximate dr by
dr = vrh (B.12)

Then the corrected time step is

v) (B.13)
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APPENDIX C

ANALYSIS OF THE ERRORS REF LECTED BY
THE CC~ ! AND RMS MATRICES

This Appendix presents an analysis supporting the discussion in Section
2.2.2.2. The purpose of the analysis is to derive a method of inferring the order
of magnitude of the state transistion matrix term errors from the CC‘l and RMS
matrices, that is, to derive Eq.(2.6) and (2.7) .

In the analysis, it is necessary to very carefully differentiate between com-
putational errors which enter the computations at different stages. The elements
of the state transition matrix C printed in the program output contain errors due
to round-off and truncation in the matrix integration. The order of magnitude of
these errors is the quantity of interest. In the subsequent computations of the
CC_l and RMS matrices in the program, the term errors in C of course propagate,
but in addition there are further roundoff errors made in these calculations. The
intent of this analysis is to separate the term errors of C from these latter round-
off errors. The analysis proceeds as follows:

Define the term errors in the printed state transition matrix by the follow-

ing relation:
= C.. + €, i,j =1, ---, 6 (C. 1)

where
Cij is the printed (computed) ijth element of C.
Ci.i is the true value of the ijth element of C
t

€ . is the absolute error in the ijth element

The inverse of the state transition matrix C-1 is obtained in the program, as shown
in Eqs. (2. 1) and (2.2), by simple rearrangement of the elements of C and appropri-

ate sign changes. Define the term errors of C—l by the relation:

(C'l)rs = (C—l)rSt * <€_l)rs, r,s = 1,---, 6 (C.2)

where
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(C-l)rs is the computed value of the rsth element of C-l
-1 . th -1
(C )rs is the true value of the rs  element of C
t
-1 . . th -1
(€ ) is the absolute error in the rs~ elementof C

rs

It is evident that the magnitude of each (C_l)rs is equal to the magnitude of some
Cij’ since the inverse matrix is obtained by rearrangement of the elements of C
and some sign changes.

In the program each element of the CC-1 matrix is computed according to

the formula

6
oY -1 T
(CC hm = /. [C5€ Ym*t o | oms L , 6 (C.3)
j=1 )

where € ro. is the roundoff error in the jth term of the computation. Substituting
(C.1) and (C. 2):
6
(CC'l)km= z [Ckit + € kj] [(c-l)jmt+ (é_l)jrr] + eroj (C. 4)

i=1

Expanding (C. 4) and retaining only first order error term gives

6 6
(cc l)kmz z Cyj. (€ ])jm +Z Cyj € 1’jm*(c l)jm€1<j+'s ro,
— t t & t t J
J=1 j=1
[¢)
- N\ -1 -1
= 6km+ /, ijt(€ )jm+(C )jmfkj + Eroj
j=1
6 -1 €
_ €. (€ M) ro.
- 6t » G (€7 LA iy J
m /, Tkj jm . 1 -1
LU tl ki (CT), 0 Gy (€T
J I t Imy
(C.5)
where
1, k=m
6km:
0, kfm
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Fach element of the RMS matrix is computed in the program according to:

{CC )
(RMS), = - km , (C. 6)
2
< -1
L [ijt(c g“f]
j=1

Now we consider the effects of these errors in certain terms of the CC_1

matrix. Eqs.(2.1) through (2.3) express CC | in terms of the M, N, S, and T sub-

matrices of C:

M N
c - (2.1
s T
tt NT
¢t - (2.2)
st Mt
w1t -nsT)  (-MNT anmT)
cct - (2.3)
st -1sT)  (-snT  +tMmT)

C.1 Assessing Magnitude of Matrix Multiplication Round off Errors Only

Consider first the upper right and lower left submatrices of Eq. (2. 3). Itis
not difficult to verify that the diagonal terms of these submatrices shouldbeidertically

zero regardless of the term errors Gij and (€ -l)rs in the elements of C, except

for roundoff errors which occur in the computation of these diagonal elements.

1
)14'

) et ]+
14t 11 ro1

For example, Eq. (C.5) gives for (CC~
1

o e : i
= Cllt(e )14+(C

1

(cc” )14

-1 -1
Clzt(€ )24 1(C )24t€12+€r02]

[ -1 -1 i -
+ C13t(€ )34 +{C )34t€13+€ro3] + _C14t(€

- r

-1 -1
+ Clst(E )gq * (C )54t615+€ro5]+

1

-1
Yaq T (C )44t€14+€ro4

i -1
)64 +(C )64t€16 +€r06

C., (e
16t

-

(C.7)
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From Eq. (2. 2) it may be seen that

- -1 -1 o
(€ g = -Cy =2 (C )14t = "C14t' O
ch,, = -c,. == (ch - Cp., (€7h,, = €
o4 = "C15 = 24, ° 15 ° 24 15
(C_l) = -C = (c'l) = -C (€ '1) - -€
34 7 "L T 34, 16, 34 16
(C. 8)
chH, = ¢, == (chH - €y - e
(€ 4= Cpp = 44, ° 1y 44 = ‘11
c'1 = C =p (C'l) = C (€ '1) = €
(C gy 12 = 54, 12, 54 12
ch,, = c.. == (ch - C € ly, = e
64 = C13 T 64, 13, 64 13
Substitution of the conditions (C. 8) into (C.7) gives
6
-1 _ ~
(CCT ), = Z € o (C.9)

the other terms in (C.7) canceling out pair by pair. The conclusion is that (CC_l)14
contains the effects of only the roundoff errors made in the matrix multiplication
process, and no effects of the term errors in the C and C-1 matrices. We would
also expect that the roundoff errors in (C. 9) would cancel out pair by pair also, if
the computer were to make equal roundoff errors in the positive and negative mem-
bers of each pair. That this is not true is an observational fact from the program
data. The conclusion is that the complementary arithmetic used by the computer
causes unequal errors in the positive and negative members of each pair.

We express (C.9) in terms of the relative roundoff error in each term:

6 €
-1 = -1 ro, .10
(cc™,, = Z C,. (C™Y). - .
L 13 4 c,. (c 1).4
€ J= .]t J t
O ‘ th
where —_l)l—-—— is the relative roundoff error in the j  term. This facili-
C. (€T, —
Ve 1%

tates a simplifying assumption in the analysis. It is a fact that the relative round -

off error in each term always lies in the interval (0, 1 x 10_8). We assume that
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g

the relative roundoff errors are independent stationary randomvariables with identi-
cal statistics over this interval. This assumption can certainly be attacked, since
the two roundoff errors from each pair of terms in (C.9) are functionally related.
However, it certainly should be valid for establishing a limit to the order of magni-
tube of the round off errors.

Let Urzel denote the variance of the relative round off errors. We also

assume that (CC~ is an unbiased random variable. That this assumption is in

)
14
fact good can be verified by examination of a typical Mode 1 trajectory computation.

Then, the second order statistics of (CC-I) can be written from (C. 10) as

14
6
o2 - Z [c Y ]2 o
-1 - 1j j4 rel
o S t t
2 = -1 2
= ol Z Cy; (€74 (C.11)
iT1 t t

From Eq. (C.6), if (CC-1)14 is an unbiased random variable, then (RMS)14 is

likewise. Therefore, from (C. 6) we can write

6

2 2 N -1
¢ . = c,. (€™, (C.12)
cc™h,, (RMS) |, J.%l [ by J4z]

Finally, from (C.11) and (C.12)

2 2

o = o
rel (RMS)14

(C.13)

The above analysis can be repeated for the other five terms of the upper
right and lower left (3 x 3) submatrices of CC-I. Eq. (C.13) results in each case
with an appropriate change of subscripts. The conclusion is that the variance of
the relative roundoff errors can be estimated directly from the appropriate RMS

matrix elements.

C.2 Assessing Term Error Magnitudes

All elements in the CC-1 matrix, other than the six considered in the
analysis above, contain both term errors and matrix multiplication roundoff errors.

These are shown explicitly in Eq. (C.5). We rewrite (C.5) as follows, separating
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the relative roundoff errors from the term errors:

6 €
-l - -1 Iro.
) T j
(CC™ km= Sxm= ckjt (C )jmt R
j=1 kjt joy
2 -1 “kj € Dy
+ > C,. (CT). ~S4 ———1-1— (C.14)
Lo Wy Umde o («©h
i=1 kJ, Jm,

We assumed above that the relative roundoff errors (first ter n the right in

(C.14) were independent, unbiased, and characterized by the variance Giel'

Similarly, we assume that the relative term errors (second term on the right in

(C.14) are independent, unbiased, and characterized by a variance Uf- These

assumptions are valid only for order of magnitude analysis. By means of these

assumptions we can write from (C. 14):

0'2 = -1 2 -1 2
cch, [fcc hen “&m] 7 19C im
6 2
_ 2 2y N -1
= (crrel + ZO't) /, [ijt(c gmt:] (C.15)
j=1

Eq. (C.12) can be generalized for the present case in the form

6 2
2 2 N -1
o = C (C 7). (C.16)
-1 {RMS) /o [ k. Jmt]
(cc )krn ki i jt
and we then conclude that
2 2 _ 2
et 2o =0 (RMS) | (C.17

W e note that the six main diagonal elements of RMS are in general biased,

since the corresponding elements of CC—1 are expected to be unity. This must be
considered in using (C.17)

In summary, the RMS matrix allows an estimate of the order of magnitude

of the term errors in the following manner. From the diagonal elements of the
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upper right and lower left (3 x 3) submatrices of RMS an estimate of the variance
o-fel of the relative roundoff errors in the CC-l matrix multiplication can be ob-
tained by using Eq. (C.13). Then, from other elements of the RMS matrix an

estimate of the variance o-i‘of the relative term errors can be obtained by using

(C.17). An example of the procedure is given in Section 2.2.2. 2.
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